
LA-UR-14-26963
Approved for public release; distribution is unlimited.

Title: Explosive Products EOS: Adjustment for detonation speed and energy
release

Author(s): Menikoff, Ralph

Intended for: Report

Issued: 2014-09-05



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy.  Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



Explosive Products EOS:
Adjustment for detonation speed

and energy release

Ralph Menikoff

September 1, 2014

Abstract

Propagating detonation waves exhibit a curvature effect in which the
detonation speed decreases with increasing front curvature. The cur-
vature effect is due to the width of the wave profile. Numerically,
the wave profile depends on resolution. With coarse resolution, the
wave width is too large and results in a curvature effect that is too
large. Consequently, the detonation speed decreases as the cell size
is increased. We propose a modification to the products equation of
state (EOS) to compensate for the effect of numerical resolution; i.e.,
to increase the CJ pressure in order that a simulation propagates a
detonation wave with a speed that is on average correct. The EOS
modification also adjusts the release isentrope to correct the energy
release.
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1 Introduction

An underdriven detonation wave is self-sustaining. For a planar detona-
tion, the detonation speed and the state behind the detonation front are
determined by the Hugoniot jump conditions and the sonic (CJ) condition.
Consequently, the detonation state is determined by the ambient (reactant)
state and the equation of state (EOS) of the explosive products. A key point
is that an underdriven planar detonation wave is independent of the burn
rate.

For a curved detonation wave, the Hugoniot jump conditions have a cor-
rection term due to the reaction-zone width. Moreover, the sonic point lies
within rather than at the end of the reaction zone. A consequence of these
two properties is that the detonation speed and the release isentrope behind
the detonation front depend on the front curvature and on the burn rate.
This dependency is known as the curvature effect, though it is typically as-
sociated with the Dn(κ) relation for the dependence of the detonation speed
on front curvature.

The reaction-zone width depends on the burn rate for the explosive. For
simulations, the reaction-zone width also depends on resolution. In partic-
ular, the numerical reaction-zone width increases as the resolution is coars-
ened. Since the leading order correction to the jump conditions is propor-
tional to the (wave width)×(front curvature), the numerical resolution affects
the curvature effect. Typically, the detonation speed decreases with coarser
resolution.

A conventional high explosive (HE), such as PBX 9501, has a small
reaction-zone width (less than 0.1mm) and hence a small curvature effect.
Resolving the reaction zone would require a cell size of 0.010mm or less.
Simulations typically use much coarser resolution. A recent resolution study
[Menikoff, 2014] found for cylinder test simulations of PBX 9501 with the
SURF burn model that the detonation speed and release isentrope varied
by only 1% over a wide range of cell sizes; from fine resolution (15 cells in
reaction zone) to very coarse resolution (1 or 2 cells). The coarse resolution
corresponds to using a burn rate to capture the detonation front (abrupt
transition of reactants to products) in the same sense that numerical dissipa-
tion is used to capture a shock front (abrupt rise in pressure); i.e., the wave
profile in both cases is artificial with a larger width than physical.
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The small change in the detonation speed and the release isentrope is
likely related to the extremum properties of the planar CJ state; namely,
on the detonation locus the CJ state corresponds to a local minimum in
both the detonation speed and the entropy (hence release isentrope). The
insensitivity to even coarse resolution implies an insensitivity to burn rate.
This is what enables the programmed burn model and detonation shock
dynamics model to work; i.e., to have a small error in the release isentrope
with coarse resolution and an artificial pseudo-rate.

When the errors in propagating a detonation wave from numerical reso-
lution are small and within the calibration uncertainty of the HE model, it
is natural to try and tweak the explosive EOS to compensate for systematic
effects of resolution; i.e., reaction-zone cell size. In the following sections we
present a procedure for modifying the products EOS in a thermodynamically
consistent manner in order to adjust the detonation speed and the energy re-
lease. While this can improve the accuracy of a simulation in some respects,
such a methodology has inherent limitations. Adjusting the EOS can not
compensate for the full curvature effect; i.e., the Dn(κ) relation. It can be
used to get the average front speed for a particular application. Similarly,
adjusting the energy release of the detonation isentrope can get the average
push on a confining material, but not the full time history.

2 EOS

A complete thermodynamically consistent EOS can be defined by a Helmoltz
free energy, F ;

F (V, T ) = e− T S , (1a)

P (V, T ) = −∂V F (V, T ) , (1b)

S(V, T ) = −∂T F (V, T ) , (1c)

where V , T , e, P and S are the specific volume, temperature, specific energy,
pressure and entropy, respectively.

To adjust the detonation state we will modify the products EOS by shift-
ing the cold curve. This can be expressed as a temperature independent shift
in the free energy;

F̃ (V, T ) = F (V, T ) + ∆ec(V ) . (2)
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It follows from the thermodynamic relations that

P̃ (V, T ) = P (V, T ) + ∆Pc(V ) , (3a)

S̃(V, T ) = S(V, T ) , (3b)

where ∆Pc(V ) = −(d/dV )∆ec(V ). Moreover, the specific heat and the
Grüneisen coefficient as a function of (V, T ),

CV (V, T ) = T (∂T S)V , (4)

Γ(V, T ) = −(V/T ) (∂V T )S =
V (∂V S)T

T (∂T S)V

, (5)

are unchanged. The isentropes for the modified EOS are simply related to
the original EOS;

T̃S(V ) = TS(V ) , (6a)

P̃S(V ) = PS(V ) + ∆Pc(V ) , (6b)

ẽS(V ) = eS(V ) + ∆ec(V ) . (6c)

We will use the subscript ‘CJ’ to denote a quantity at the CJ state; e.g.,
PCJ = P (VCJ, eCJ). On a function of V , the subscript ‘CJ’ will denote the
quantity on the isentrope through the CJ state; e.g., PCJ(V ) = PSCJ

(V ) and
PCJ = PCJ(VCJ).

The detonation speed DCJ and CJ state (VCJ, eCJ, PCJ) of the original
EOS are determined by the Hugoniot equation and the sonic condition:

eCJ = e0 + 1
2
(PCJ + P0) · (V0 − VCJ) , (7)

PCJ − P0

V0 − VCJ

= −
(

∂P

∂V

)
S

(
VCJ, eCJ

)
≡ (DCJ/V0)

2 . (8)

where (V0, e0, P0) is the ambient reactants state.1 Then the isentrope through
the CJ state is determined by integrating the ODE

de/dV = −P (V, e) , (9)

1 If the HE model has an explicit energy release Q in addition to an offset in the energy
origins of the reactants and products, then e0 in the Hugoniot equation (7) should be
replaced by e0 + Q.
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with the initial condition e(VCJ) = eCJ. We note, the sonic condition has
the geometric interpretation that the CJ isentrope is tangent to the Rayleigh
line; P = P0 − P ′

CJ(VCJ)(V0 − V ).

The problem is to determine ec(V ) such that the modified EOS has a
small shift in the detonation speed and in the energy release;

D̃CJ = DCJ + ∆D , (10)

ẽCJ − ẽCJ(V∗) = [eCJ − eCJ(V∗)] + ∆e , (11)

where V∗ is some suitable value of the specific volume in expansion that is
relevant to an application, such as the rule of thumb V∗ = 7 V0.

We choose the new CJ state to be (VCJ, PCJ + ∆PCJ). We note that it
has the same specific volume as the original EOS, and that the change in the
detonation speed is

∆D

V0

=
[
PCJ + ∆PCJ − P0

V0 − VCJ

]1/2

−
[
PCJ − P0

V0 − VCJ

]1/2

∆D

DCJ

≈ 1
2

∆PCJ

PCJ − P0

. (12)

Moreover, the CJ isentrope determines the shift in the cold curve; i.e.,
∆Pc(V ) = ∆PCJ(V ).

The energy shift can then be expressed in terms of the pressure shift on
the CJ isentrope:

∆ec(V ) = ∆eCJ −
∫ V

VCJ

dV ′∆PCJ(V
′) , (13a)

∆eCJ = 1
2
∆PCJ · (V0 − VCJ) . (13b)

The choice of ∆eCJ guarantees that the new CJ state lies on the detonation
locus of the modified EOS.

We construct ∆Pc(V ) separately in two regions: 0 ≤ V ≤ V0 and V0 < V .
Continuity of ∆Pc and its first and second derivatives are required in order
that the release wave does not have kinks or a split wave structure; i.e., the
characteristic velocity varies smoothly with pressure.
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Region 1: 0 < V ≤ V0

In this region we take ∆PCJ(V ) to be linear;

∆PCJ(V ) = ∆PCJ · (V0 − V )/(V0 − VCJ) . (14)

This satisfies the sonic condition for the new CJ state;

−
(

∂P̃CJ

∂V

)(
VCJ

)
= −

(
∂PCJ

∂V

)(
VCJ

)
−

(
∂∆PCJ

∂V

)(
VCJ

)
=

PCJ − P0

V0 − VCJ

+
∆PCJ

V0 − VCJ

=
P̃CJ − P0

V0 − VCJ

.

We also note that ∆PCJ(V0) = 0 and ∆PCJ(V ) ≥ 0. Hence, it gives a positive
contribution to the shift in the energy release. Asymptotically ∆PCJ(0) =
∆PCJ · V0/(V0 − VCJ) is negligible since PCJ(V ) →∞ as V → 0.

Region 2: V0 < V

In this region we take ∆PCJ(V ) to be proportional to PCJ(V );

∆PCJ(V ) = −f(V )[1 + a f(V )]
V0

V0 − VCJ

· ∆PCJ

PCJ(V0)
PCJ(V ) , (15a)

f(V ) =
1− V0/V

1 + [(V/V0 − 1)/dv]2
, (15b)

where a and dv are dimensionless parameters. We note that f(V ) ≥ 0 for
V > V0, f(V0) = 0 and f(V ) → 0 as V →∞. Independent of the parameters,
∆PCJ(V ) and its first derivative at V0 match the values in region 1 at V0.
The parameter a is chosen such that the second derivative is 0 at V0; i.e.,
matches second derivative in region 1. Straight forward algebra yields

a = 1− V0 P ′
CJ(V0)/PCJ(V0) . (16)

Since the slope of an isentrope is negative, P ′
CJ = (d/dV )PCJ(V ) < 0 and

the parameter a is positive. Hence, ∆PCJ(V ) ≤ 0. The parameter dv con-
trols how fast f(V ) goes to 0. Since f(V ) is monotonically decreasing with
decreasing dv, it can be used to adjust the energy release.
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3 Illustrative example

As an example of the modified EOS construction, we take the original CJ
isentrope to be PCJ(v) = 30 v−γ GPa, where γ = 3 where v = V/VCJ. Fur-
thermore, we take v0 = V0/VCJ = 1.3. This roughly corresponds to a solid
HE, such as PBX 9501 or PBX 9502. Typically, PCJ has an uncertainty of
few tenths of GPa.

For the adjusted CJ pressure we take ∆PCJ = 0.5GPa. This corresponds
to ∆D/DCJ = 0.8%. For the modified products EOS, ∆PCJ(V ) is shown in
figure 1 for several choices of the parameter dv. We note that the shift in the
energy release,

∆e =
∫ V∗

VCJ

dV ′ ∆PCJ(V
′) , (17)

decreases with increasing dv. It may be either positive or negative. For the
example, ∆e = 0 corresponds to dv = 0.26 .
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Figure 1: Shift in cold curve pressure, ∆Pc, as parameter dv is varied.
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4 Final remarks

Modification of the products EOS to adjust the detonation speed and energy
release is not unique. The construction here is general in that it makes no
special assumptions on the EOS. Furthermore, it maintains the asymptotic
behavior of the original EOS as V → 0 and V →∞.

The last requirement, ∆PCJ(V ) → 0 as V → ∞, forces ∆PCJ(V ) to be
non-convex, as seen in figure 1. For the release wave behind a detonation to be
a rarefaction wave, the modified CJ isentrope, P̃CJ(V ) = PCJ(V )+∆PCJ(V ),
needs to be convex. This limits ∆PCJ and hence the detonation speed and
energy release adjustments to be small.

In addition, there maybe restrictions on the domain. Typically, products
EOS are of the Mie-Grüneisen form with a constant specific heat. Since
CV 6→ 0 as T → 0, isotherms at low temperatures have van der Waal loops.
Detonation waves are at high pressure and high temperature (T > 1000K).
The flow for detonation simulations typically does not get into the anomalous
region. But such an EOS model would not be appropriate for deflagration
waves with initial state around room temperature.
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